Smart Grid V2X Energy & Mobility

  • looptijd: 2014 - 2016
  • locatie: Bunnik, Utrecht
  • functie: Mobiliteit en Transport

Smart Grid V2X Energy & Mobility (V2X)

SEAMLESS TRAVEL AND TRANSPORTATION, CLEAN AND AFFORDABLE ENERGY
  • Thema: Dynamic Charging, DC Grid Architectures
  • Onderwerp: Inzetten van EV’s voor beter energiegrid-management

Bi-directioneel laadsysteem gekoppeld aan een slim energiemanagement systeem.

Doel: Balans op het Net door accu’s van elektrische voertuigen te gebruiken om lokaal energie op te slaan.

Er wordt onder andere innovatieve nieuwe hardware en besturingssoftware voor snel(ont)laden voor V2X ontwikkeld en getest in Amsterdam Nieuw-West.

Hiermee worden eindgebruikers in staat gesteld hun elektrische voertuigen beschikbaar te stellen voor het balanceren van het elektriciteitsnetwerk.

Locaties: Amsterdam en Lochem

Subsidie

Dit project wordt mede mogelijk gemaakt door Switch2SmartGrids (TESG113015).

De projectkosten voor de 11 projecten samen bedragen 12,03 miljoen euro: 5,28 miljoen euro subsidie en 6,75 miljoen euro eigen bijdragen.

Projectpartners

Cofely (Engie) Smart Grid SolutionsMitsubishi, Amsterdam Smart City, Endesa, ResourcefullyHogeschool van Amsterdam en Alliander

Subsidie: Switch2SmartGrids TESG113015

Partners: 

Smart Grid V2X Energy & Mobility

Open mobility services platform

Doel van dit V2X project is het significant beter onder controle krijgen van energiegridmanagement door het hierop aansluiten van (ont)laadbare Elektrische Voertuigen.

  • Een lokaal energienet is beter gebalanceerd door het lokaal laden en ontladen van EV’ s.
  • Zoveel mogelijk via lokaal duurzaam opgewekte elektriciteit
  • Er is een open mobility services platform ontwikkeld, waarop services kunnen worden ontwikkeld zoals V2X, waarmee eindgebruikers in staat worden gesteld hun EV beschikbaar te stellen ten behoeve van het balanceren van het elektriciteitsnetwerk.
  • Technische, economische en sociale barrières worden geslecht naar grootschalige implementatie van elektrische voertuigen en PV. Het streven is 40.000 (PH)EVs via V2X te ontsluiten (20% van de Nederlandse (PH)EV-autoverkopen in 2020 (200 duizend (PH)EVs per jaar)). Wereldwijd lijkt het vooralsnog om enkele miljoenen (PH)EVs te gaan.
  • Wijken worden ondersteund om zelfvoorzienend te opereren.

Optimaliseren elektriciteitsmarkt

Real time prijzen zichtbaar, prikkels om EV opslag beschikbaar te stellen.

Flexdiensten

Afstemmen vraag en aanbod duurzame energie en elektrisch vervoer.

Data

After two years of running, our calculations with Amsterdam V2G yield the following results:

  1. The household increased the energy independence or, zero Emission energy autonomy (from 34 to 65% with V2G);
  2.  Solid decline in energy exchange with the electricity network 45% less compared to situation without V2G;
  3. Storage size efficiency reaches 93%  with 10 kWh storage capacity, this is close to a maximum storage level, more storage capacity contributes little extra;
  4. Operational energy losses in storage in DC batteries, and re-conversion when consuming the energy about 80%.
  5. Capacity of the battery and the degradation of this after in 2 year time is quite limited (ca. 6-7%)

Beter balanceren van het energienet

Deze samenwerking zal een bijdrage leveren om de verschillende technische, economische en sociale barrières weg te nemen. Dit brengt de grootschalige implementatie van elektrische auto’s, de inzet van zonnepanelen en het zelfvoorzienend worden van huishoudens een stap dichterbij.

After two years of running, our calculations with Amsterdam V2G yield the following results:

  1. The household increased the energy independence or, zero Emission energy autonomy (from 34 to 65% with V2G);
  2.  Solid decline in energy exchange with the electricity network 45% less compared to situation without V2G;
  3. Storage size efficiency reaches 93%  with 10 kWh storage capacity, this is close to a maximum storage level, more storage capacity contributes little extra;
  4. Operational energy losses in storage in DC batteries, and re-conversion when consuming the energy about 80%.
  5. Capacity of the battery and the degradation of this after in 2 year time is quite limited (ca. 6-7%)

Energy autonomy

Just 34% of the energy consumed by the household comes directly from the photovoltaic installation. Without the EV, the rest of the energy would be injected into the grid, or taken from it. The presence of the battery, however, allows for an energy buffer between the production and consumption of energy, bridging the gap between both. In consequence, the proportion of energy consumed either directly from the sun or indirectly from the EV amounts to 65%.

Thus, we observe that the inclusion of the EV improves energy autonomy by 31%. The presence of the grid is not so necessary, and the household can cover better its energy requirements.

According to the data, the presence of the EV battery almost halves the energy exchange with the grid. This can be a great way to increase grid stability in the near future, when widespread of local renewable production put in risk the capacity of the grid.

We also observe that the biggest advantages for grid use reduction are reached in September and March, precisely the months when the volumen of production and consumption of energy is more or less equal, and the batteries are used the most, loading during daytime and discharging during the evening.

Battery

Another question is wether the EV battery is big enough to reap the benefits of the PV installation.

Our calculations suggest that with a 7kWh battery, 93% of the energy that is produced by PV (and could be used by the household) is already leveraged

Last, there is the question about the battery degradation during these last two years, during which the batteries have experienced around five hundred cycles of charge and discharge. First of all, the capacity of the battery remains more or less constant: it loads completely with 7 kWh, and discharges 6,5 kWh. This means 0,5 kWh of electricity are lost in the conversion.

The ratio of incoming energy and outcoming energy is not reliable during winter months, due to the scarce use of the battery and its maintenance operations. During summer, the data is more reliable, and yield a more or less constant efficiency around 80%. Considering only the months of September and March, the ones where the battery is used the most, the efficiency of the battery experiences an slight, constant decrease in efficiency, from 90% to 82%.

  • HEMS software
  • Smart Bi directioneel laden
  • Businessmodel NL

Amsterdam Smart City

  Maaike Osieck   amsterdamsmartcity.com    maaike@amsterdamsmartcity.nl    +31 647846514